
Using a Planner to Balance

Real Time Strategy Video Game

Thierry Fayard

Centre National d’Etude Spatiale
18 av ed Belin 31400 Toulouse

Thierry.fayard@cnes.fr

Abstract
Real time strategy video games often include species able to
fight each other. For the author to balance species
parameters in order to make the game interesting can be a
very difficult task, currently involving many players in long
tests phases. In this paper we show how we can emulate
average to good players with a planner based on simulated
annealing algorithm. In such a game, and during the
developing phase only, the players have to find the best
sequence of activities to build the strongest army. Formally,
it is maximizing an objective function within a given time.
This planning problem is subject to temporal constraints
and constraints for renewable, non renewable and
cumulative resources. The cumulative resources are
depleted or replenished over time depending on the player's
choice. A general real-time strategy game model is
presented. We choose Starcraft as an example where we
compare our planner with human players. Then we discuss
how our planner is able to help to balance species.

Introduction

To be able to balance species in a real time strategy (RTS)
video game, we need first to be able to emulate very good
players in such games. This paper describes a simulated
annealing (SA) procedure to solve a resource constrained
planning problem, as found in RTS. In the 1990's,
computer capabilities made possible this kind of RTS
video game, so called because time seems to flow
continuously for the player, who has to manage a part of a
simulated world, while the computer or another player
controls another part of that world. 'Dune', 'Warcraft', 'Red
Alert', 'Age of Empires', 'Command and conquer' and
'Starcraft' are some of the most well known RTS video
games. In all of them the player has to choose one species,
then to collect resources, build a big army and fight the
enemy. Species can be very different from each other, but
they must be similar in power, otherwise everybody will
choose the most powerful one. In the early phase of such a
game, each player gathers resources and develops an army,
prior to any kind of interaction with other players. We
have interest only in the developing phase and we don’t
consider any interaction between players in this paper.

The player may execute a variable amount of activities, in
an order chosen by him only, under resource and
precedence constraints. This results in an army, along with
some production facilities, which will determine the ability
to achieve victory.

A practical application is developed to illustrate the
efficiency of the SA algorithm and to compare the results
with some of the best possible sequences of activities
which experienced players already know. The comparison
between what the software provides and what an
experienced player does gives us confidence in our results.

This paper is organized as follows. First we detail the
modeling of an RTS game and the given constraints in
Section 2. We discuss implementing simulated annealing
to optimize the objective function in Section 3. We present
in Section 4 some key points of the software that we
specifically developed for 'Starcraft', a very well known
RTS game. Finally in Section 5 we show some results and
explain how developers, can take advantage of such
methods to balance their game. Section 6 is the concluding
section of the paper.

A model for real-time strategy games

What is a real-time strategy game ?
In most real-time strategy games, competition based on
resource gathering and killing enemies takes place on a
two-dimensional map. On the map there are units,
buildings and some collectable materials. Units and
buildings may belong either to you or to your enemies, and
you can control only your own. Most materials on the map
are available for all, in fixed quantities or infinite, as long
as you are able to collect them. They can be wood, food or
mine, depending on the context of the game. A unit is an
entity able to move on the map. It can be a soldier, a tank,
an aircraft, a resource collector or any moving device.
Units are mostly fighters : they are able to destroy other
units or buildings. They can be specialized in ground
attack (short - or long-range), air attack or resource

gathering. The buildings are used to produce units,
upgrade units, allow materials storage, or develop specific
capabilities which enable production of some kind.
Materials are required to produce a unit, a building or an
upgrade, and they must be available at the time you decide
to produce it. They have to be collected constantly by the
players. There are many options to win the game, but to
destroy all enemy units and buildings is the most common.
If you play against a human, you need an army at least
about the same size as his one to achieve victory, and in
addition, you also need to constantly produce new units to
replace lost ones.

In short, we can distinguish two phases in such a game : a
‘development phase’ and a ‘fighting phase’. Each player
starts the game with some units and/or buildings, then he
develops his army, this is the ‘development phase’. When
he feels strong enough, he starts to move his fighter units
to engage the enemy, this is the ‘fighting phase’. Although
these two phases can be partly simultaneous, we only
consider the ‘development phase’ as an independent whole
in this paper. In practice, this limitation is of no
consequence for the player for two reasons. First, most of
the time there is no interaction at all between players in the
beginning, because they start on distant places on the map.
The time taken by a player to move his army from one
place to another will be used by his adversary to produce a
much stronger army, and this effect is particularly relevant
at the beginning. Second, once the player has chosen a
tactic, the set of activities to be planned doesn’t depend on
the decision taken by his adversary. The player has only to
guess the most appropriate tactic with his limited
knowledge of the opponent’s intention. In brief we will,
here, only consider a single-agent planning problem and
omit the multi-agent theories.

The general planning problem in RTS
During the ‘development phase’, playing means executing
one of the four type of activities and nothing else :

· sending a collector unit to materials
· building something
· producing units
· upgrading units.

Collecting materials is an automatic process which usually
doesn’t need the player’s attention, as for other types of
activities. Building something can start as soon as the
required resources and the materials are available. The
same situation applies for producing units and upgrades. It
ends after a given time which may differ also due to the
state of the game. For example, some upgrades may reduce
the duration of building. In some games, one can use more
than one unit to speed up the building process.

Any activity can be performed many times while resources
are available and the dependence-feasible graph is
respected. After the start, activities can run concurrently.

Activities can be performed in alternative modes which
differ with regard to processing time or resource
requirements.

In the present context, a play is a sequence of activities
(SOA) ordered by their starting dates. Then the planner has
to find the best SOA which will optimize an objective
function within a given time.

The resources
We will define three types of resources in a way which is
convenient for this problem.

(i) The renewable resources : most units or buildings are
renewable resources. For example a building can be used
to produce units, when the process ends the building is
available for another task. It is the same for units, when
they end the construction of a building they are available
for another task. Unlike classical RCPSP, Resource
Constraint Project Scheduling Problem (Bouleimen,
Lecocq 1998) the number of such resources is not fixed at
all, and depend on the activities already processed by the
player.

(ii) The non renewable resources : In most RTS games,
there is only one resource of this type, which is used to
limit the total population of units. For example, it can be
the total number of farms you control which determines
your maximum population limit. That resource is a non
renewable one since, once it is affected, it cannot come in
use for something else. Again here, the number of such
resources is not fixed, and depends on the activities
already processed by the player.

(iii) The resource reservoirs (also called cumulative
resources) : In most real time strategy games, material has
to be collected on the map. It can be gold, food, wood and
so on. Sometimes, the total available amount is limited, for
example a gold mine may come to an end. Sometimes it is
not, for example, a forest may provide wood forever. We
will consider that they are always available, which is the
case at the start of the game. These materials are stocked in
reservoirs, generally there is one reservoir for each type of
material, but their capacity has no limit. These resource
reservoirs are filled over time with materials at a speed
which depends on the number of resources allocated by the
player to that task. Materials are collected by all collector
units, except when they have something else to do, such as
building something. When more than one resource
reservoir is present, the player can balance the number of
units attributed to each one. A good assumption for the
game model is to state that collectors are always collecting
materials when they don’t perform a different known
activity. A special building is sometimes needed to be able
to collect peculiar materials, for example a farm to collect
food. To increase the collecting speed, you just need to
create more collecting units. The collecting speed can also
be improved if you upgrade some units, or if you develop

some special abilities, which of course comes at a cost.
Sometimes the maximum collecting speed cannot exceed a
threshold given by the game state. The key parameter for
materials is the time needed to collect them. Resource
reservoirs are depleted by most activities done by the
player, such as producing a unit or a building.

Most activities need resources and materials in an amount
which may vary, depending on the state of the game. All
three type of resources, renewable, non-renewable and
materials in resource reservoirs have to be available when
an activity starts. As one can see, the production model for
resources can be relatively complex and is specific to each
game.

The dependence-feasible graph
In RTS game, it is not possible to perform any activity at
any time. You have to follow a precedence constraint
directed a-cyclic graph to construct buildings, units or
upgrades. We will call such graph a dependence-feasible
graph. For example, in the ‘Starcraft’ game, you can’t build
an airport if you don’t have a factory, you need barracks to
produce a soldier, and so on. Often you have more than
one dependence link. In some cases, you can cluster two
units to make a bigger one, or you can transform some
units into buildings. Again, this makes the model quite
complicated.

Time constraint
Each activity, such as constructing a building or producing
a unit, takes some time to be completed. An activity cannot
be stopped before the end, it can be cancelled in the game,
but we won’t consider that case.

Most of the time, to produce a unit, you need a specific
building, which has to be available at the start of the
activity. For example, to produce a marine you need
barracks for 20 seconds, meanwhile the barracks cannot be
used for something else. Since building can produce units
only one by one, time is also a strong constraint. Buildings
are also needed to perform upgrades, but they are usually
effective for all units when finished.

The rule is that, to perform an activity, you have to wait
for the resources to be available. An activity is thus
feasible when :

· the dependence graph is respected, or will be respected
when some previous activities come to an end
· needed renewable resources are ready, or will be ready
when some previous activities comes to an end
· needed non renewable resource are available, or under
production
· needed materials are available in resource reservoir, or
at least one unit is able to collect them.

When an activity is feasible, it may take some time before
it actually starts, because materials may have to be

collected, a building under construction may have to be
finished first, or a building needed is already doing
something which has to be terminated first. Waiting for
resources to be available introduces lags. This decreases
the efficiency of the project, a good player will thus try to
minimize delays.

The player goal
To win the game, you must eradicate your opponents, and
this is the purpose of most units. Each has some hit points
and some attack points. The more hit points it has, the
tougher it is, the more attack points it has, the more hit
points it can get from each enemy shot. Units may also
have some defense points to reduce enemy attacks, some
air attack points to attack air units, and so on. Some
advanced units have special abilities which make them
efficient, but these peculiarities may safely be ignored. We
will not discuss all subtleties of these games in this paper
and we will only consider that attack point is a good thing
to maximize. The sum of attack points of all units is the
army strength.

Considering that there are three ways to optimize a plan, or
a sequence of activities (SOA) according to the player
goal :
· The army strength is given and we want the SOA which
allows to achieve this strength in the shortest possible
time. Although it is a usual RCPSP, it is not a usual
situation for the player.
· The number of activities is fixed and the objective
function is the army strength. This is not a good choice,
because it does not take into account the duration to
achieve the SOA.
· The total duration is given and the objective function is
the army strength obtainable within that duration. This is a
usual situation for the player.

We choose that third option, because players frequently
decide on a given duration without attack, it can be 5 to 20
minutes. A sequence optimized for 5 minutes will be very
different from one optimized for 10 minutes, because in
the latter you need to spend more on production
equipments, and you don’t have time for that in the first
case. To take this issue into account, we simply evaluate
the army strength obtained with all the activities in the
sequence which end before the specified date. The
objective function will be that army strength.

The use of the simulated annealing algorithm for

planning optimization

Simulated annealing (SA) is a meta-heuristic which
belongs to the local search algorithm class (Kirkpatrick,
Gellat, Vecchi, 1983) (Aarts, Korst, 1989). We have
chosen SA because it seems to be simpler to use than
Genetic algorithm or taboo search, but it would be nice to
try also these meta-heuristics. SA is an iterative process

with only one current solution and one neighborhood, in
which we select the next solution. Solutions are a
Sequence Of Activities (SOA) in our case. The sequence is
a mere starting-time ordered activity list. The algorithm
starts by evaluating an initial SOA, which is the first
parameter to choose, and an SOA near the initial SOA
called the neighbor. By "evaluate" we mean compute the
objective function for that SOA with the game model.
Then SA may replace the initial SOA by this neighbor
with a probability which is a function of the evaluation
difference and the “temperature”, or the time already spent
in the search. Then SA looks again for a new neighbor and
so on.

We have tuned the different SA parameters in the software
developed for this type of game. Though this was made
specifically for the 'Starcraft' game, these parameters
should also be appropriate for similar games. The
simulated annealing algorithm is described below :

The initial SOA
Choose the initial sequence of activities. Usually even a
beginner has an idea of how to play, aberrant sequences
can be avoided. But in fact, we have seen that even with a
very bad start, the algorithm is able to find a good outcome
in a medium size problem.

The cooling scheme
Choose the initial 'temperature' parameter To . Roughly a
value of some tenths of a percent of the objective function
of the initial state is appropriate. The descent profile of the
temperature function A logarithmic descent should give
the absolute optimum, but it is very slow. We implemented
an adaptive descent profile. The temperature will decrease
by a factor µ if, for a given number M of iterations, the
new sequence is always accepted. The value µ is near and
below 1. For example, 0.98 works well. M should be large
enough, in our case one thousand to some thousands are
good values.

(Tk if the number of consecutive accepted
transitions < M

Tk+1 =
(µ.Tk if the number of consecutive accepted
transitions = M

The probability of acceptance is given as follows :

0.5 - 0.5 tanh [2m (ck - ck+1 - Tk+1)]

where ck is the cost function of iteration k, and m is the
slope. The slope m can be related to T in the following
way : m=mo/Tk, to give more significance to the slope for
large values of T.

The stop criterion
There are two stop criteria. First, the process is stopped
when the objective function doesn't make any significant

progress for a given number N of iterations. Second, the
process is stopped when the total number of iterations
exceeds a given value.

The neighborhood-generation mechanism
There are many ways to choose the neighborhood
definition. Some serve different purposes for the user. We
describe here four of them :

(i) Two activities are randomly selected in the SOA and
switched.

(ii) One activity is randomly selected in the SOA and
replaced by a randomly selected activity among all
available ones.

(iii) randomly choose one of the following moves :
switch two randomly selected activities inside the
sequence or, replace one randomly selected activity by
another randomly selected one among all available
activities. The probability of switching should be much
higher than the one of replacing.

(iv) The same as the previous one, except that the
replacement of an action is done by choosing a new
activity inside the sequence.

Neighborhood (i) is usable when you know exactly what
actions have to be selected. The initial SOA has to be
appropriate for the aim. The result will be a better
permutation. Neighborhood (ii) can give some results, but
it is (iii) which gives by far the best results. Option (iv)
needs also some knowledge from the user since the initial
SOA has to contain all needed activities appropriate for the
aim, only the number and the positions of each type of
activity vary.

The objective function
As mentioned above, the objective function can be the
plain sum of all attack points (or any desirable
characteristic) of units or buildings obtained, after all
activities have been performed, before a given date. The
question arises of the SOA which are not feasible, and
probably most of them are not feasible because of the
structure of the graph of the precedence relation constraint.
The first idea is to give a zero value to the function in that
case, but it is not very efficient because too many SOA are
rejected, and it may be difficult to get out of some local
maxima. It is also possible to reduce the objective function
by a weight depending on the number of violations. In fact,
we got very good results by just skipping infeasible
activities in the SOA, while evaluating the objective
function. When too many activities are infeasible, the
feasible activities are not able to give good results, in this
way it reacts as a good weight. If you have only a few
infeasible activities in a good SOA, this one can stay and
then evolve favorably later. It was a great improvement of
the algorithm. The slight drawback is that it increases the

number of activities in the SOA at the beginning of the
search.

The computational experiment

The application was coded and compiled with the Builder
C++. The tests were carried out on a PC AMD Athlon-
3200+ with 2 Gigabytes memory under MS Windows XP.
We preferred to program the software completely, rather
than to use commercial tools. Nevertheless every
parameters of the model are accessible in a single file. So,
the costs, the durations of construction or production of
unit, the tree of dependence are modifiable simply.

We chose to illustrate our optimizer with the game
'Starcraft', a Blizzard company title. This game was ranked
at the top by some game magazines in years 1996-2000,
because of its game play, its depth and its variety, among
other reasons. Compared to those of other real time
strategy game, the 'Starcraft' developing phase is very rich.

A straightforward way to compute the model is to follow
time, as 'Starcraft' itself was computed. As time goes on
you update the state of the game. It is easy and safe to
compute such model. The problem is that it is very
demanding in processing time. Especially when the time
step is tiny, you spend all your time updating. The way we
choose to compute the model is based on events. For each
new activity, we find which events make it possible. This
method seems to be more than twenty times faster than the
method which follows time.

Figure I
The model fits the game well. Differences may be seen, just as

between 2 human players, but there are no drift.

To simplify the model, the distribution of resource
collectors is fixed at three for gas and the others are for

mines, a typical situation, at the start of the game. The
resource-production functions are mostly linear with time
and with the number of resource collectors, and is
weighted with some tabulated values. Non linear terms are
to represent efficiency loss when the number of these units
exceeds fifteen. Of course, when resource collectors are
doing something else, such as building, this is taken into
account.

Some model parameters, such as traveling duration, were
tuned to fit a human player for various SOA. When the
behavior of the model is compared to the actual game on a
different set of SOA, one can find some small oscillating
differences, but there is no long term drift, as we can see in
Figure 1.

Figure II
Here one can see how DPS progress while temperature decrease

with iteration process

The model validation versus human players

The general behavior of our planner is good with Terran
species, average with Protoss and unsatisfactory with Zerg.
Differences arise from the model, for example Protoss
have less way to achieve good results since the number of
units is lower at the beginning and the dependence’s tree is
longer. For the Zerg the non renewable use of a unit to
build structure makes the problem more difficult. This is
because that unit is used also to fill reservoir resource. It
may happen that the reservoir is empty, so it is not possible
to buy a unit able to fill the reservoir. This problem is
easily solved by adding sometime that unit at the start of
the sequence. But globally simulated annealing works fine
as we will see. We have compared the obtained solutions

0
100
200
300
400
500

1 4 7 10 13 16 19

ac tio n n u m b er

tim
e i

n s
ec

on
ds

gam e m ode l

a S im ula te d Ann e a lin g run fo r Te rra n

0

100

200

300

400

500

600

700

1000
6000

1100 0
1600 0

2100 0
2600 0

3100 0
3600 0

4100 0
4600 0

5100 0
5600 0

Nb o f ite r at io n

DP
S

(o
bj

ec
tiv

e f
un

ct
io

n)
to le ranc e
c urrent
bes t

with our planner versus those given by an expert in
Starcraft, and they match well.

We will separate analysis on short term solutions in which
we plan about 30 activities and longer term solutions, with
up to 130 activities.

For sequences of actions with a short duration, the planner
converges to the best solution after a few trials. For short
durations, the best solution is known because millions
players tested it and it is available for the community on
many internet sites. Such solutions are called rush play,
because it is a way to win very quickly against a non
prepared player, or a player who intends to prepare a long
term attack. That’s why players sometimes decide in
advance to avoid rush.

For longer problems, differences may arise between
experienced players and our planner. The solutions are not
usually published. Mainly because after some time in the
game, the key factor to win won’t be only the development
phase but also a good scouting of the enemy intention, to
help the player in choosing a good tactic. Also some other
factors (such as speed’s player or agility) interfere, but this
is out of our consideration. Anyway an expert player tried
our solutions for longer problems and found them very
satisfactory. We are not able to claim that we got the
global optimum, but we can say that the best solution we
found is a very good solution and even our expert is not
able to find a better one. We then after compare the found
solutions to our best known to determine the planner
reliability.

Number of actions
Project duration

27 actions
450 sec

78 actions
800 sec

106 actions
1200 sec

Problem size 1038 10111 10151

Optimum value for
ground attack

224 824 1348

number of runs
over 95% of
optimum

45% 10% 10%

number of runs
over 90% of
optimum

45% 13.3% 30%

Average value 180 656 1207

Standard deviation 49.5 99.5 69.0

Relative deviation 18.6% 15.1% 5.7%

Table I
Performances of our planner for Terran sequences of actions

As one can see, Table I shows that the reliability of the
planner is very good for small projects. Indeed in one run
you have 55% chances of being under 95% of optimum,
but after 10 runs this probability drops to 3 over 100000
(#55/100)10. For medium-size or large problem the results
are encouraging.

Surprisingly, the relative deviation decreases when the
number of activities goes up. This is due to the game itself.
You have more ways to achieve a good result when you
have time to perform numerous activities. Consequently,
the stochastic search finds its way near the optimum more
easily.

Let's analyze the best run for a search optimizing a 1200-
second ground attack. If you know enough about that game
you can see that it found a very good solution with 3
marines, 15 firebats, 8 vultures and 31 tanks. The total
strength is 1348, done in 106 actions. The buildings are
one set of barracks and three factory shops. Vultures
probably have the best quality-price ratio with 20 attack
points for low cost 75 mines only, so one wonders why the
solution also gives firebats. The answer is that, to create
vultures, you need a factory which needs barracks. So, if
you have barracks, it is good to produce firebats. One can
also wonder why we get tanks. The answer is more subtle
because the cost is heavy, 150 for mine, 100 for gas and 50
seconds for time, but we have to consider that supply
building is another constraint in the game. Indeed, a
vulture and a tank both consume a fourth of a supply
which takes 100 mines and, above all, time to be built.
Therefore, since gas production is due to the presence of
factory, it is good to produce some tanks too. The play as
usual starts with 4 resource collectors and a base. Then the
beginning of the found sequence is as follows :

5 resource collectors
1 supply // you need one supply for 8 units
1 refinery // to get gas as soon as possible
5 resource collectors
1 barrack
1 resource collector
1 supply
2 resource collectors // all of them are created as soon as

//possible
1 factory
1 resource collector
1 factory
1 factory shop // for tank production
1 tank,… // then only it starts to produce

fighting //units along with supply

That sequence was tested with a human A, against an other
good human player B, on a special map with no relief at all
to avoid tactic influences. Player A had to follow the
computer sequence of action. All players had to wait 1200
seconds before attacking in a unique massive battle. Player

B lost because his army strength was only 1284 compared
to 1348 for player A, mainly because one factory shop was
missing in his SOA.

Balancing the game’s parameters

The game parameters are mainly : costs in resources both
for buildings or units, production duration, damage per
second (DPS) and/or hit points. The idea is that two
species are balanced if the best found sequences of actions
give similar DPS in a given time. To avoid singularities, in
place of using only the best SOA, we use the average DPS
of the sequences found in a given radius from the best one.
For example if the planner give 1000 SOA, may be 50 will
have a DPS at 90% of the best one, then we take the
average DPS of these 50 SOA. We do the same for each
species and we compare the average DPS.

We can compare Terran and Protoss production curves as
shown in figures III and IV. They show obtained DPS with
20 runs sequences terminated at the time indicated below.
Durations have only relative signification. The Protoss
species seems to be more efficient, especially with best
players. Actually it is not true since the game is well
balanced. But this first approach doesn’t consider the range
which can be very large for Terran tanks. Units Protoss
found by the planner are always hand-to-hand fighters
(Zealot and Dark Templar) and they are more tough.
Obviously, a different objective function have to be found
to represent effectiveness.

Figure III
The developing curve for Terran obtained from our planner for
best and average simulated players. Two steps appears for bests
due to firebat production and tanks production. Average players
are also able to produce these units but later than best players.

But it is interesting to notice that the curves reflect reality
quite well. For the Terran we can see that a good player is
able to produce firebats or tanks about 50 seconds before
an average player and it gives good advantage for a while.
Protoss’s curve tells that the gap between good and average
players is large.

Figure IV
The developing curve for Protoss shows a steep end due to Dark

Templar units which are available after 450 seconds and are
very efficient. They have also stealth capability, but they are
weak. One can see also that the gap between the best and the
average player is much higher than Terran’s one. May be this

shows that our planner is able to find out that Protoss are more
difficult to play than Terran, which is well admitted.

If we change manually some parameters such as
production duration or costs in resources we can see well
the result in the curves, and there is much to say. Some
parameters, such as the cost of resources collectors, are
very efficient for short duration sequences. And for long
duration sequences the unit’s cost are preponderant as
expected.

So we can see that our planner is able to give back some
known fact on Starcraft game. We suppose that it may be
of some help for developers who want to simulate various
kind of players quickly.

Conclusion

The 'Starcraft' planning problem seems to be an easy one,
especially for Terran. May be the shape of the objective
function is smooth near the optimum. Since 'Starcraft' is a
game, the complexity of the problem is limited, this is

T ERRA N

0

50

100

150

200

250

300

350

400

250 300 350 400 450 500 550 600

S econds

aver age
max

P RO TOS S

0

50

100

150

200

250

300

350

400

450

500

250 300 350 400 450 500 550 600

s e co n d s
D

PS av erage
max

probably why the results are so encouraging. Genetic
algorithms and tabu search should also be tested. We are
quite confident that adaptation to other real-time strategy
games will give similar results.

We have briefly shown that game designers may use such
techniques to balance their games. Of course, human
players will not be replaced by optimization software, but
the latter can accelerate this part of the game development.
Because if the game is not balanced in terms of production
capability for different species, it will be hardly balanced
at all. Of course, one have to consider more precisely cost
function, plain DPS is not probably the best criteria. May
be a proportion of hit points, defense points, or the range,
has to be added to the DPS in that function. In addition to
that, we can think of models able to include dynamic
(speed) and/or geometric properties (range, zone effect…)
for fight’s simulation. But the problem description and the
model will then be more delicate by far.

Some other extensions in our software can be anticipated.
Giving the ability to free some parameters and fix others
and make stochastic search at a double level, one for the
sequence of action as we already do and one based on the
gap between species. Probably, all these tracks can be
usefully investigated.

References

Kirkpatrick, S. and Gelatt, C. D. and Vecchi, M. P. 1983.
Optimization by Simulated Annealing, Science 4598, vol
220, 671-680.

Aarts, E.H.L. and Korst, J.H.M. 1989. Simulated
Annealing and Boltzmann Machines: A Stochastic
Approach to Combinatorial Optimisation and Neural
Computing. Wiley, Chichester

Bouleimen, K. and Lecocq, H. 1998. A new efficient
simulated annealing algorithm for the RCPSP and its
multiple mode version, in : Proceedings of the 6th
International Workshop on Project Management
and Scheduling, Istanbul.

